
Hidden Grassmann structure in the XXZ model III: introducing the Matsubara direction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 304018

(http://iopscience.iop.org/1751-8121/42/30/304018)

Download details:

IP Address: 171.66.16.155

The article was downloaded on 03/06/2010 at 08:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/30
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 304018 (31pp) doi:10.1088/1751-8113/42/30/304018

Hidden Grassmann structure in the XXZ model III:
introducing the Matsubara direction

M Jimbo1,2, T Miwa3 and F Smirnov4,5

1 Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo 153-8914, Japan
2 Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba 277-8582, Japan
3 Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502,
Japan
4 Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie,
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Abstract
We address the problem of computing temperature correlation functions of the
XXZ chain, within the approach developed in our previous works. In this paper
we calculate the expected values of a fermionic basis of quasi-local operators,
in the infinite volume limit while keeping the Matsubara (or Trotter) direction
finite. The result is expressed in terms of two basic quantities: a ratio ρ(ζ )

of transfer matrix eigenvalues and a nearest neighbour correlator ω(ζ, ξ). We
explain that the latter is interpreted as the canonical second kind differential in
the theory of deformed Abelian integrals.

PACS numbers: 02.30.Ik, 02.20.Uw, 75.10.Pq

1. Introduction

The present paper is a continuation of the paper [2], which was written almost a year ago and
was dedicated to the memory of Alyosha Zamolodchikov. It so happens that the topic we
discuss this time is not too far from a domain in which he made giant footsteps. So, life goes
on, but there stays a painful sorrow caused by his early death.

Consider the XXZ spin chain with the Hamiltonian

H = 1

2

∞∑
k=−∞

(
σ 1

k σ 1
k+1 + σ 2

k σ 2
k+1 + �σ 3

k σ 3
k+1

)
, � = 1

2
(q + q−1), (1.1)

where σa (a = 1, 2, 3) are the Pauli matrices. To avoid technicalities, in this Introduction
let us accept (1.1) as a formal object acting on HS = ⊗∞

j=−∞ C
2. We shall touch upon the
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limit from a finite chain in the body of the text. In the papers [1, 2], we studied the vacuum
expectation values (VEVs)

〈q2αS(0)O〉XXZ = 〈vac|q2αS(0)O|vac〉
〈vac|q2αS(0)|vac〉 . (1.2)

Here |vac〉 denotes the ground-state eigenvector, S(k) = 1
2

∑k
j=−∞ σ 3

j , and O is a local
operator. We have obtained a description of (1.2) in terms of fermionic operators. For that
purpose, it was essential to consider operators of the form q2αS(0)O, which we call quasi-local
operators with tail α.

An important generalization of our results was proposed by Boos, Göhmann, Klümper
and Suzuki [4]. They gave evidences that our fermionic description works equally well in the
presence of a finite temperature and a non-zero magnetic field:

〈q2αS(0)O〉XXZ,β,h = TrS(e−βH+hSq2αS(0)O)

TrS(e−βH+hSq2αS(0))
, (1.3)

where TrS stands for the trace on HS. For β → ∞ and h = 0, the expectation value (1.3)
reduces to (1.2). For us this was quite an exciting development, because it shows that the
fermionic structure is not a peculiarity of VEVs, but is rather a reflection of a symmetry hidden
deep in the model. It should be said that in the paper [4] the expectation values (1.3) were not
considered in full generality. The formula expressing them in terms of fermionic operators
was formulated as a conjecture, which was checked in some particular cases but was left
unproved.

The first question which we asked ourselves was, why not to add other local integrals of
motion to −βH + hS in (1.3). The physical meaning of such a generalization is obscure, but
it should be possible for integrable models. This question, together with an intuition coming
from the papers [6, 9], led to the following generalization of (1.3). Along with the space HS,
consider the Matsubara space HM,

HM = C
2s1+1 ⊗ · · · ⊗ C

2sn+1, (1.4)

with an arbitrary spin sm and a spectral parameter τm attached to each component. The
generalization of (1.3) is given by the following linear functional:

Zκ{q2αS(0)O} = TrS TrM(TS,Mq2κS+2αS(0)O)

TrS TrM(TS,Mq2κS+2αS(0))
. (1.5)

Here TS,M denotes the monodromy matrix associated with HS ⊗ HM (see (2.2).
The idea behind the generalization (1.5) is simple: for whichever spins and τm that we put

in the Matusbara direction, TrM(TS,M) commutes with HXXZ . One expects that using cleverly
this arbitrariness in the definition of HM, it should be possible to reproduce any function of
local integrals of motion under the trace. In particular, in order to reproduce (1.3) from (1.5),
one has to take special inhomogeneities and then to consider the limit n → ∞. This point
is explained in detail in [6, 9].6 In the present paper, we compute Zκ for finite n, leaving the
discussion of the limit for future publication. We would like to emphasise, however, that this
limit is not complicated. For finite n, Zκ will be expressed in terms of only two functions,
ρ(ζ ), ω(ζ, ξ) (see (1.12) below) and one needs only to take the limit of them. Let us explain
all that in some more details, starting from our fermionic operators.

For the moment we forget about the Matsubara direction, and concentrate on the
description of the operators acting on HS. The logic of our papers [1, 2] is close to that
of CFT: we describe the space of quasi-local operators as a module created from the primary

6 With an appropriate choice of τm, (1.5) reproduces the trace of a ‘quantum’ transfer matrix of [6, 9].
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field q2αS(0) by creation operators. We recall below the main features of the construction
in [2].

We say that X = q2αS(0)O is a quasi-local operator with tail α if it stabilizes outside
some finite interval of the infinite chain: to qασ 3

j on the left and to Ij on the right. The
minimal interval with this property is called the support of X. The spin of X is the eigenvalue
of S(·) = [S, ·] where S = S(∞) is the total spin operator. We denote by Wα the space of
quasi-local operators with tail α, and by Wα,s its subspace of operators of spin s ∈ Z. Consider
the space

W (α) =
∞⊕

s=−∞
Wα−s,s .

On this space we defined the creation operators t∗(ζ ), b∗(ζ ), c∗(ζ ) and annihilation operators
b(ζ ), c(ζ ). These are one-parameter families of operators of the form

t∗(ζ ) =
∞∑

p=1

(ζ 2 − 1)p−1t∗p,

b∗(ζ ) = ζ α+2
∞∑

p=1

(ζ 2 − 1)p−1b∗
p, c∗(ζ ) = ζ−α−2

∞∑
p=1

(ζ 2 − 1)p−1c∗
p,

b(ζ ) = ζ−α

∞∑
p=0

(ζ 2 − 1)−pbp, c(ζ ) = ζ α

∞∑
p=0

(ζ 2 − 1)−pcp.

The operator t∗(ζ ) is in the centre of our algebra of creation–annihilation operators,

[t∗(ζ1), t∗(ζ2)] = [t∗(ζ1), c∗(ζ2)] = [t∗(ζ1), b∗(ζ2)] = 0,

[t∗(ζ1), c(ζ2)] = [t∗(ζ1), b(ζ2)] = 0.

The rest of the operators b, c, b∗, c∗ are fermionic. The only non-vanishing anti-commutators
are

[b(ζ1), b∗(ζ2)]+ = −ψ(ζ2/ζ1, α), [c(ζ1), c∗(ζ2)]+ = ψ(ζ1/ζ2, α),

where

ψ(ζ, α) = ζ α ζ 2 + 1

2(ζ 2 − 1)
. (1.6)

Each Fourier mode has the block structure

t∗p : Wα−s,s → Wα−s,s
(1.7)

b∗
p, cp : Wα−s+1,s−1 → Wα−s,s , c∗

p, bp : Wα−s−1,s+1 → Wα−s,s .

Among them, τ = t∗1/2 plays a special role. It is the right shift by one site along the chain.
Consider the set of operators

τmt∗p1
· · · t∗pj

b∗
q1

· · · b∗
qk

c∗
r1

· · · c∗
rk
(q2αS(0)), (1.8)

where m ∈ Z, j, k ∈ Z�0, p1 � · · · � pj � 2, q1 > · · · > qk � 1 and r1 > · · · > rk � 1. It
can be shown that (1.8) constitutes a basis ofWα,0 (we postpone the proof to other publication).

Now we start to consider the spaces HS and HM together. We shall prove that

Zκ{t∗(ζ )(X)} = 2ρ(ζ )Zκ{X}, (1.9)

Zκ{b∗(ζ )(X)} = 1

2π i

∮
�

ω(ζ, ξ)Zκ{c(ξ)(X)}dξ 2

ξ 2
, (1.10)
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Zκ{c∗(ζ )(X)} = − 1

2π i

∮
�

ω(ξ, ζ )Zκ{b(ξ)(X)}dξ 2

ξ 2
, (1.11)

where � goes around ξ 2 = 1. In particular,

ρ(ζ ) = 1
2Zκ{t∗(ζ )(q2αS(0))},

ω(ζ, ξ) = Zκ{b∗(ζ )c∗(ξ)(q2αS(0))}.
They are given in terms of the eigenvalues of the transfer matrices and the Q operators, as well
as other characteristics in the Matsubara direction. Their explicit formulae will be given in
(2.6) and (7.2). In appendix C we shall explain that ω(ζ, ξ) is a quantum deformation of the
canonical normalized second kind differential on a hyperelliptic Riemann surface.

From equations (1.9)–(1.11) one immediately derives

Zκ
{
t∗

(
ζ 0

1

) · · · t∗
(
ζ 0
k

)
b∗(ζ +

1

) · · · b∗(ζ +
l

)
c∗(ζ−

l ) · · · c∗(ζ−
1 )(q2αS(0))

}
=

k∏
p=1

2ρ
(
ζ 0
p

) × det(ω(ζ +
i , ζ−

j ))i,j=1,...,l . (1.12)

Taking the Taylor coefficients in
(
ζ ε
i

)2 − 1 in both sides, one obtains the value of Zκ on an
arbitrary element of the basis (1.8). This is the main result of the paper.

The text is organized as follows. In section 2, we give the precise definition of the linear
functional Zκ on the space Wα,0. We explain that on any particular X ∈ Wα,0 this functional
reduces to a finite expression. In section 3, we prove (1.9). A significant part of this section
is devoted to the reduction of Zκ{t∗(ζ )(X)} to finite intervals. This is a point which is used in
section 6. In section 4, we explain some simple facts about transfer matrices and Q operators
in the Matsubara direction. It should be considered as preparation for the following sections.
In section 5, we introduce q-deformed Abelian integrals which are constructed via eigenvalues
of Q operators in the Matsubara direction. We introduce q-deformed exact forms and present
the q-deformed Riemann bilinear relations. In section 6, we consider Zκ{b∗(ζ )(X)}. We
formulate two lemmas which are proved in appendices A and B. Informally, these lemmas say
that Zκ{b∗(ζ )(X)} is a q-deformation of a normalized second kind Abelian differential in ζ ,
which has a prescribed singularity specified by the quasi-local operator X. In the classical limit,
such a differential can be expressed using the canonical normalized second kind differential.
Formula (1.10) is an analogue in the quantum case, the function ω(ζ, ξ) playing the role of
the canonical differential. In section 7, we define ω(ζ, ξ). Using the results in section 5, we
prove that it satisfies all the necessary requirements. Finally, in section 8, we prove the main
theorem which states that (1.10) and (1.11) hold.

As mentioned above, appendices A and B are devoted to the proof of the technical lemmas
in section 6. In appendix C, we consider the classical limit of the q-deformed Abelian integrals
and differentials. Then we explain that the classical limit of ω(ζ, ξ) is indeed related to the
canonical normalized second kind differential. Some general information about differentials
on Riemann surfaces is provided. Readers who are not familiar with Riemann surfaces are
recommended to read section 5 and appendix C together. In appendix D, we show equivalence
of several non-degeneracy conditions accepted in the text.

2. Definition of the linear functional Zκ

Consider a two-dimensional finite lattice composed of two one-dimensional chains: the space
chain and the imaginary time or the Matsubara chain. The space chain has 2l sites which are
labelled by the letters j = −l + 1, . . . , l. With every site the Pauli matrices σa

j are associated.
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 Space

(α+κ) σ 3
= q = qi j

a
r
a
b
u
s
t
a
M

κ σ 3
= L

Figure 1. The broken links represent the operator O: the arrows on them are fixed.

The Matsubara chain has n sites labelled by boldface letters m = 1, . . . , n. With every site we
associate a half-integral spin sm and a parameter τm, in other words a (2sm + 1)-dimensional
evaluation representation of the quantum group Uq(ŝl2). We assume that

∑n
m=1 sm is an

integer.
We define the monodromy matrix

Tj,M(ζ ) = Lj,n(ζ/τn)Lj,n−1(ζ/τn−1) · · · Lj,1(ζ/τ1).

The L operator Lj,m(ζ/τm) is obtained from the universal one

Lj(ζ ) = q
1
2

(
ζ 2q

H+1
2 − q− H+1

2 (q − q−1)ζFq
H−1

2

(q − q−1)ζq− H−1
2 E ζ 2q− H−1

2 − q
H−1

2

)
j

,

by letting E,F,H act on the (2sm + 1)-dimensional representation of Uq(sl2). We shall
consider a twisted transfer matrix

TM(ζ, κ) = Trj (Tj,M(ζ, κ)),

Tj,M(ζ, κ) = Tj,M(ζ )qκσ 3
j ,

and use the letter T (ζ, κ) to denote its eigenvalues.
Now we are ready to introduce the main object of our study. On the space Wα,0 consider

the linear functional

Zκ{q2αS(0)O} = lim
l→∞

TrM Tr[−l+1,l](T[−l+1,l],Mq2(κS[−l+1,l]+αS[−l+1,0])O)

TrM Tr[−l+1,l](T[−l+1,l],Mq2(κS[−l+1,l]+αS[−l+1,0]))
. (2.1)

Here and for later use, we set

T[k,m],M = Tk,M · · · Tm,M, Tj,M = Tj,M(1). (2.2)

In terms of the equivalent six-vertex model, functional (2.1) is given by the partition function
on the infinite cylinder (figure 1).

Suppose that the transfer matrix TM(1, κ) has a unique eigenvector |κ〉 such that the
corresponding eigenvalue T (1, κ) has the maximal absolute value. Similarly let 〈κ + α| is be
eigencovector of TM(1, κ + α) with the eigenvalue T (1, κ + α) possessing the same property.

5
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Let us remark that for the XXX model the spectrum in spin zero sector is known to be simple
even in the homogeneous case [14]. Suppose also that

〈κ + α|κ〉 	= 0. (2.3)

It is clear that in this situation (2.1) reduces to the linear functional

Zκ{q2αS(0)O} = lim
l→∞

〈κ + α|Tr[−l+1,l](T[−l+1,l],M q2(κS[−l+1,l]+αS[−l+1,0])O)|κ〉
〈κ + α|Tr[−l+1,l](T[−l+1,l],M q2(κS[−l+1,l]+αS[−l+1,0]))|κ〉 . (2.4)

This is the object which we shall calculate. For any given quasi-local operator we can proceed
further. Indeed, if the support of q2αS(0)O = q2αS(k−1)X[k,m] is contained in the interval [k,m]
of the space chain, then

Zκ{q2αS(k−1)X[k,m]} = ρ(1)k−1 〈κ + α|Tr[k,m](T[k,m],M q2κS[k,m]X[k,m])|κ〉
T (1, κ)m−k+1〈κ + α|κ〉 , (2.5)

where

ρ(ζ ) = T (ζ, α + κ)

T (ζ, κ)
. (2.6)

Function (2.6) will play an important role for us; we shall see in the following section that this
is the same function as in (1.9). The last formula (2.5) shows, as it has been said, that the limit
l → ∞ is superfluous. It is put in formula (2.4) just for the sake of treating all quasi-local
operators simultaneously.

It may look surprising that the thermodynamic limit in this approach is so simple. Usually,
it requires a complicated analysis of Bethe equations. Certainly, the complexity of the problem
cannot disappear, and it is hidden in the limiting process n → ∞ to arrive at (1.3). But the
idea used in [7], and developed further in [8], is that one can proceed rather far before taking
this limit. This is especially true in the present work. The complexities of the thermodynamic
limit of Zκ(X) are confined to only two functions, for which one can take the limit n → ∞
rather easily.

Let us emphasize one point which may be a source of confusion. We started with (2.1),
reduced it to (2.4) and further to (2.5). The expression on the right-hand side of (2.4) is
perfectly well defined for any pair of eigenvectors of TM(ζ, κ) and TM(ζ, κ + α) satisfying
condition (2.3). For the computation of (2.4) we shall use only quite general facts concerning
Bethe vectors, so they are valid in general. Still, the subject of our study is (2.1), and it reduces
to (2.4) only for the eigenvectors corresponding to the maximal eigenvalues.

3. Computation of Zκ{t∗(ζ)(X)}
According to (1.7) we are actually interested only in the following block of t∗(ζ ):

t∗(ζ, α) = t∗(ζ )|Wα,0→Wα,0 .

Let us recall the definition of the operator t∗(ζ, α) given in the paper [2]. We start with a
finite interval and an operator X[k,m]. With this notation we imply that X[k,m] acts as I outside
[k,m]. Define for l > m

t∗[k,l](ζ, α)(X[k,m]) = Tra(Ta,[k,l](ζ, α)(X[k,m])),

where

Ta,[k,l](ζ, α)(X[k,m]) = Ta,[k,l](ζ )qασ 3
a X[k,m]Ta,[k,l](ζ )−1,

Ta,[k,l](ζ ) = Ra,l(ζ ) · · ·Ra,k(ζ ),

6
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Ra,j (ζ ) is the standard 4 × 4 R-matrix (see e.g. (2.4), [2]). Define further

R̃
∨
i,j (ζ

2) = ζ Si Ri,j (ζ )Pi,j ζ
−Sj = 1 + (ζ 2 − 1)ri,j (ζ

2),

where Pi,j (·) = Pi,j (·)Pi,j and Pi,j is the permutation operator. Since R̃
∨
i,j (1) = 1, ri,j (ζ

2) is
regular at ζ 2 = 1. Then [2]

t∗[k,l](ζ, α)(X[k,m]) = 2
l−1∑
j=m

(ζ 2 − 1)j−mrj+1,j (ζ
2) · · · rm+2,m+1(ζ

2)R̃
∨
(ζ 2)(Y[k,m+1])

+ (ζ 2 − 1)l−m Tra{ra,l(ζ
2)rl,l−1(ζ

2) · · · rm+2,m+1(ζ
2)R̃

∨
(ζ 2)(Y[k,m+1])},

where Y[k,m+1] = qασ 3
k τ (X[k,m]), τ is the shift by one site of the chain to the right, and

R̃
∨
(ζ 2)(Y[k,m+1]) = R̃

∨
m+1,m(ζ 2) · · · R̃∨

k+1,k(ζ
2)(Y[k,m+1]).

Hence the limit l → ∞ is well defined as a power series in ζ 2 − 1:

t∗(ζ, α)(q2αS(k−1)X[k,m]) = lim
l→∞

q2αS(k−1)t∗[k,l](ζ, α)(X[k,m])

= 2q2αS(k−1)

∞∑
j=m

(ζ 2 − 1)j−mrj+1,j (ζ
2) · · · rm+2,m+1(ζ

2)R̃
∨
(ζ 2)(Y[k,m+1]).

We repeated these definitions because we want to make clear the following point. Take a
2 × 2 matrix K such that Tr(K) 	= 0 and consider the following object:

t∗[k,l](ζ, α,K)(X[k,m]) = 2

Tr(K)
Tra(KaTa,[k,l](ζ, α)(X[k,m])),

Then it is easy to conclude from the above definition that

t∗[k,l](ζ, α,K)(X[k,m]) = t∗[k,l](ζ, α)(X[k,m]) mod (ζ 2 − 1)l−m. (3.1)

Lemma 3.1. We have

Zκ{t∗(ζ )(q2αS(0)O)} = 2ρ(ζ )Zκ{q2αS(0)O}. (3.2)

Proof. Without loss of generality, let O = X[1,m] be localized on the interval [1,m],

Zκ{t∗(ζ, α)(X[1,m]q
2αS(0))}

= lim
l→∞

〈κ + α|Tr[1,l],a(T[1,l],Mq2κS[1,l]Ta,[1,l](ζ, α)(X[1,m]))|κ〉
T (1, κ)l〈κ + α|κ〉 .

From the considerations above we obtain

〈κ + α|Tr[1,l],a(T[1,l],Mq2κS[1,l]Ta,[1,l](ζ )(X[1,m]))|κ〉
= 2

T (ζ, κ)
〈κ + α|Tr[1,l],a(T[1,l],Mq2κS[1,l]Ta,M(ζ )qκσ 3

a Ta,[1,l](ζ, α)(X[1,m]))|κ〉
mod (ζ 2 − 1)l−m.

The idea here is exactly as in (3.1). The monodromy matrix Ta,M(ζ )qκσ 3
a plays the role of

Ka . The fact that it carries the additional structure as operator in the Matsubara space is not
important. What is important is that the state |κ〉 is an eigenstate of Tra

(
Ta,M(ζ )qκσ 3

a

)
with

7



J. Phys. A: Math. Theor. 42 (2009) 304018 M Jimbo et al

eigenvalue T (ζ, κ). Now we can proceed using the Yang–Baxter equation and the cyclicity of
trace:

2

T (ζ, κ)
〈κ + α|Tr[1,l],a

(
T[1,l],Mq2κS[1,l]Ta,M(ζ )qκσ 3

a Ta,[1,l](ζ, α)(X[1,m])
)|κ〉

= 2

T (ζ, κ)
〈κ + α|Tr[1,l],a(Ta,[1,l](ζ )(Ta,M(ζ )q(κ+α)σ 3

a T[1,l],Mq2κS[1,l]X[1,m]))|κ〉

= 2

T (ζ, κ)
〈κ + α|Tr[1,l],a(Ta,M(ζ )q(κ+α)σ 3

a T[1,l],Mq2κS[1,l]X[1,m])|κ〉
= 2ρ(ζ )〈κ + α|Tr[1,l](T[1,l],Mq2κS[1,l]X[1,m])|κ〉,

which proves the assertion. �

Some comments on (3.2) have to be made. It has been said that τ = t∗1/2 is the shift by
one site of the chain to the right. According to [2] the rest of t∗p is constructed from the adjoint
action of local integrals of motion. Then, looking at (2.1) one may wonder where ρ(ζ ) comes
from. Naively, it should not be on the right-hand side because τ and adjoints of the integrals
of motion commute with TrM(TQ,M) and hence they should not contribute to (2.1) due to the
cyclicity of trace. However, this is not correct in the presence of the disorder field q2αS(0). Let
us explain this point in the simplest case τ = t∗1/2. Consider definition (2.1). For finite l in
(2.1), we define the cyclic shift by one site τ periodic, which acts in particular as

τ periodic(q2αS[−l+1,0]) = q2αS[−l+2,1] .

On the other hand, it is easy to see from the definition that our operator τ acts as

τ (q2αS[−l+1,0]) = q2αS[−l+1,1] .

This difference accounts for the appearance of ρ(1) in functional (2.1). A similar thing
happens with the adjoint action of the local integral of motion Ip(·) = [Ip, ·]. The operator

I
periodic
p feels the two inhomogeneities of q2αS[−l+1,0] : between sites 0 and 1 and between sites

−l + 1 and l, while the operators entering the definition of t∗(ζ ) feel only the first one. This
is the reason why ρ(ζ ) appears. There are two cases when ρ(ζ ) = 1. The first one is trivial:
α = 0. The second one is the case of VEVs (1.2) which was considered in [1, 2].

Before proceeding to b∗ and c∗ we have to give some explanation about q-deformed
Abelian integrals.

4. Spectral properties in Matsubara direction

Consider the transfer matrix

TM(ζ, λ) = Tra
(
Ta,M(ζ )qλσ 3

a

)
.

Let us introduce the Q operator

Q+
M(ζ, λ) = ζ λ−S TrA(TA,M(ζ, λ)),

where S is the total spin operator acting on the Matsubara chain, and

TA,M(ζ, λ) = LA,n(ζ/τn) · · · LA,1(ζ/τ1)q
2λDA.

Here the L operators are associated with the q-oscillator algebra with generators aA, a∗
A,DA.

For the notation and conventions, see [2]. If sm = 1/2, then

LA,m(ζ ) =
(

1 − ζ 2q2DA+2 −ζaA

−ζa∗
A 1

)
m

(
q−DA 0

0 qDA

)
m

. (4.1)

8
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To obtain LA,m(ζ ) for other spins, one applies the standard fusion procedure. The Q operator
Q−

M(ζ, λ) is defined by

Q−
M(ζ, λ) = JQ+

M(ζ,−λ)J,

where J is the operator of spin reversal.
These Q operators satisfy the Baxter equation:

TM(ζ, λ)Q±
M(ζ, λ) = d(ζ )Q±

M(ζq, λ) + a(ζ )Q±
M(ζq−1, λ). (4.2)

These equations hold for the eigenvalues because TM(ζ, λ) commute with Q±
M(ξ, λ).

The functions a(ζ ), d(ζ ) are defined by spins and inhomogeneities present in the
Matsubara direction

a(ζ ) =
n∏

m=1

asm(ζ/τm), as(ζ ) = ζ 2q2s+1 − 1,

(4.3)

d(ζ ) =
n∏

m=1

dsm(ζ/τm), ds(ζ ) = ζ 2q−2s+1 − 1.

Let us cite one formula from [5]

Q+
M(ζ, λ)Q−

M(ζq, λ) − Q−
M(ζ, λ)Q+

M(ζq, λ) = 1

qλ−S − q−λ+S
W(ζ), (4.4)

where

W(ζ) =
n∏

m=1

wsm(ζ/τm), ws(ζ ) =
2s∏

k=1

(1 − ζ 2q2k−2s+1).

Suppose that TM(ζ, λ) has a unique eigenvector |λ〉 with eigenvalue T (ζ, λ) such that
T (1, λ) has maximal absolute value. We denote by Q±(ξ, λ) the eigenvalues of Q±

M(ξ, λ) on
|λ〉. If the eigenvector |λ〉 has spin d − ∑n

m=1 sm, it follows from the form of the L operator
(4.1) that ζ−λ+SQ+(ζ, λ) is a polynomial in ζ 2 of degree d, while ζ λ−SQ−(ζ, λ) is of degree
2
∑n

m=1 sm − d. Due to the quantum Wronskian relation (4.4), their leading and the lowest
coefficients are both nonzero.

Let us discuss the symmetry under negating λ. We have

TM(ζ,−λ) = JTM(ζ, λ)J, (4.5)

which implies that the spectra of TM(ζ, λ) and TM(ζ,−λ) coincide, and, in particular,

T (ζ, λ) = T (ζ,−λ). (4.6)

Furthermore, the equation

Q−
M(ζ, λ) = JQ+

M(ζ,−λ)J

implies that

Q−(ζ, λ) = Q+(ζ,−λ). (4.7)

Due to (4.5) the vectors |λ〉 and | − λ〉 have opposite spins.

9
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5. Deformed Abelian integrals

Working with quantum integrable models, one should not neglect the important piece of
intuition provided by the method of separation of variables (SoV) discovered by Sklyanin
[13]. It has been explained in [10] that the matrix elements of observables in the SoV method
are expressed in terms of deformed Abelian integrals. In the case under consideration, which
is related to the algebra Uq(ŝl2), these integrals are deformations of hyperelliptic ones. Let us
give their definition.

Introduce the function ϕ(ζ ) which satisfies the equation

a(ζq)ϕ(ζq) = d(ζ )ϕ(ζ ). (5.1)

This function is elementary

ϕ(ζ ) =
n∏

m=1

ϕsm(ζ/τm), ϕs(ζ ) =
2s∏

k=0

1

ζ 2q−2s+2k+1 − 1
.

In addition to the contour � which encircles ζ 2 = 1, we consider n + 1 contours in the ζ 2 plane:
�0 which goes around 0, and �m which encircles the poles ζ 2 = τ 2

mq2sm−2k−1 (k = 0, . . . , 2sm)
of ϕsm(ζ/τm).

In the following, we use the q-difference operator

�ζf (ζ ) = f (ζq) − f (ζq−1).

It acts on the class of functions of the form f (ζ ) = ζ λP (ζ 2), P being a polynomial in ζ 2 and
q2(n+λ) 	= 1 for all integers n. Within this class the q-primitive �−1

ζ f (ζ ) is defined uniquely.
There are two kinds of deformed Abelian integrals,∫

�m

f ±(ζ )Q∓(ζ, κ + α)Q±(ζ, κ)ϕ(ζ )
dζ 2

ζ 2
, (5.2)

where ζ∓αf ±(ζ ) is a polynomial in ζ 2, in order that the integrand is single valued.
We start our study of deformed Abelian integrals with the following technical lemma.

Lemma 5.1. Let ζ∓αf ±(ζ ) be a polynomial in ζ 2. Then, for m = 0, . . . , n, the following
identities hold:∫

�m

{
T (ζ, κ)�−1

ζ f ±(ζq) − T (ζ, κ + α)�−1
ζ f ±(ζ )

}
Q∓(ζ, κ + α)Q±(ζ, κ)ϕ(ζ )

dζ 2

ζ 2

=
∫

�m

f ±(ζ )a(ζ )Q∓(ζ, κ + α)Q±(ζq−1, κ)ϕ(ζ )
dζ 2

ζ 2
, (5.3)

∫
�m

{
T (ζ, κ + α)�−1

ζ f ±(ζ ) − T (ζ, κ)�−1
ζ f ±(ζq−1)

}
Q∓(ζ, κ + α)Q±(ζ, κ)ϕ(ζ )

dζ 2

ζ 2

=
∫

�m

f ±(ζ )d(ζ )Q∓(ζ, κ + α)Q±(ζq, κ)ϕ(ζ )
dζ 2

ζ 2
. (5.4)

Proof. This can be verified directly by applying the Baxter equation to T (ζ, κ)Q±(ζ, κ),

T (ζ, κ + α)Q∓(ζ, κ + α) and moving contours of integration. �

It is well known that, on a compact Riemann surface of genus g, the space of the first
and the second kind differentials (meromorphic differentials without residues) has a finite
dimension 2g when considered modulo exact forms. In [10] it was explained what are the

10
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q-deformed exact forms, for which the deformed Abelian integrals vanish. Since the proof
was omitted in that paper we include it here.

Lemma 5.2. Define a q-deformed exact form to be an expression

E(f ±(ζ )) = T (ζ, κ)�−1
ζ (f ±(ζ )T (ζ, κ)) + T (ζ, κ + α)�−1

ζ (f ±(ζ )T (ζ, κ + α))

− T (ζ, κ)�−1
ζ (f ±(ζq)T (ζq, κ + α))

− T (ζ, κ + α)�−1
ζ (f ±(ζq−1)T (ζq−1, κ))

+ a(ζq)d(ζ )f ±(ζq) − d(ζq−1)a(ζ )f ±(ζq−1), (5.5)

where ζ∓αf ±(ζ ) is a polynomial in ζ 2. Then we have∫
�m

E(f ±(ζ ))Q∓(ζ, κ + α)Q±(ζ, κ)ϕ(ζ )
dζ 2

ζ 2
= 0.

Proof. Let us divide the integral into two pieces∫
�m

E(f ±(ζ ))Q∓(ζ, κ + α)Q±(ζ, κ)ϕ(ζ )
dζ 2

ζ 2
= I1 + I2, (5.6)

where I1 contains first four terms from (5.5) and I2 contains remaining two. Apply (5.3) to
the first and the fourth terms in I1, and to the second and the third terms as well. Using the
Baxter equation and moving contours using (5.1), one obtains

I1 =
∫

�m

f ±(ζq−1)T (ζq−1, κ)Q∓(ζ, κ + α)Q±(ζq−1, κ)a(ζ )ϕ(ζ )
dζ 2

ζ 2

−
∫

�m

f ±(ζ )T (ζ, κ + α)Q∓(ζ, κ + α)Q±(ζq−1, κ)a(ζ )ϕ(ζ )
dζ 2

ζ 2
.

Now apply the Baxter equation

I1 =
∫

�m

f ±(ζq−1)Q∓(ζ, κ + α)(Q±(ζq−2, κ)a(ζq−1) + Q±(ζ, κ)d(ζq−1))a(ζ )ϕ(ζ )
dζ 2

ζ 2

−
∫

�m

f ±(ζ )(a(ζ )Q∓(ζq−1, κ + α)

+ d(ζ )Q∓(ζq, κ + α))Q±(ζq−1, κ)a(ζ )ϕ(ζ )
dζ 2

ζ 2
.

Moving contours we find

I1 =
∫

�m

{d(ζq−1)a(ζ )f ±(ζq−1) − a(ζq)d(ζ )f ±(ζq)}Q∓(ζ, κ + α)Q±(ζ, κ)ϕ(ζ )
dζ 2

ζ 2
,

i.e. I1 = −I2. �

A beautiful feature of deformed Abelian integrals is that they allow for a deformation of
the Riemann bilinear relations as well. In [10] the latter are given in the full-fledged form.
For our present purposes, it is sufficient to use a part of them given by the following lemma.

Lemma 5.3. Consider the following function in two variables:

r(ζ, ξ) = r+(ζ, ξ) − r−(ξ, ζ ),

where

r+(ζ, ξ) = r+(ζ, ξ |κ, α), r−(ξ, ζ ) = r+(ξ, ζ | − κ,−α),

11
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and

r+(ζ, ξ |κ, α) = T (ζ, κ)�−1
ζ (ψ(ζ/ξ, α)(T (ζ, κ) − T (ξ, κ)))

+ T (ζ, κ + α)�−1
ζ (ψ(ζ/ξ, α)(T (ζ, κ + α) − T (ξ, κ + α)))

− T (ζ, κ)�−1
ζ (ψ(qζ/ξ, α)(T (ζq, κ + α) − T (ξ, κ + α)))

− T (ζ, κ + α)�−1
ζ (ψ(q−1ζ/ξ, α)(T (ζq−1, κ) − T (ξ, κ)))

+ (a(ζq) − a(ξ))d(ζ )ψ(qζ/ξ, α) − (d(ζq−1) − d(ξ))a(ζ )ψ(q−1ζ/ξ, α).

(5.7)

Then∫
�i

∫
�j

r(ζ, ξ)Q−(ζ, κ + α)Q+(ζ, κ)Q+(ξ, κ + α)Q−(ξ, κ)ϕ(ζ )ϕ(ξ)
dζ 2

ζ 2

dξ 2

ξ 2
= 0. (5.8)

Proof. The proof is similar to that of the previous lemma. We apply lemma 5.1, invoke the
Baxter equation and move the contours. When the Baxter equation is applied to expressions
like ψ(ζ/ξ, α)(T (ζ, κ)−T (ξ, κ)) separately with respect to ζ and ξ , a singularity may appear
from ψ(ζ/ξ, α). In general, by moving the contours such a singularity produces intersection
numbers as in the genuine Riemann bilinear relations (see [11]). In the present case, this does
not happen because the contours do not have nontrivial intersections. �

Clearly ξαr+(ζ, ξ) is a polynomial in ξ 2 and ζ−αr−(ξ, ζ ) is a polynomial in ζ 2, both of
degree n. This allows us to define the polynomials p±

m by

r+(ζ, ξ) =
n∑

m=0

ζ αp+
m(ζ 2)ξ−α+2m, r−(ξ, ζ ) =

n∑
m=0

ξ−αp−
m(ξ 2)ζ α+2m.

Introduce the (n + 1) × (n + 1) matrices

A±
i,j =

∫
�i

ζ±α+2jQ∓(ζ, κ + α)Q±(ζ, κ)ϕ(ζ )
dζ 2

ζ 2
, (5.9)

B±
i,j =

∫
�i

ζ±αp±
j (ζ 2)Q∓(ζ, κ + α)Q±(ζ, κ)ϕ(ζ )

dζ 2

ζ 2
. (5.10)

Then (5.8) reads as

B+(A−)t = A+(B−)t . (5.11)

We explain in appendix C that, in the classical limit q → 1 (and for α = 0), A±,B± reduce
to the matrices of a-periods of differentials of the first and the second kinds, respectively.
Relation (5.11) becomes one quarter of the classical Riemann bilinear relations which state
that the full matrix of a- and b-periods is an element of the symplectic group.

Before closing this section let us make a comment. Suppose ζ∓αf (ζ ) is a rational function.
We assume that the poles of this function do not overlap those of ϕ(ζ ) and ζ 2 = 0. In this case,
the q-primitive �−1

ζ f (ζ ) is not uniquely defined, and in general develops infinitely many poles
q2nw (n ∈ Z, w are the poles of ζ∓αf (ζ )). Nevertheless lemma 5.1 remains true. Actually it
tells that the deformed Abelian integrals on the left-hand side of (5.3) and (5.4) do not depend
on a particular choice of the q-primitive. For the same reason, deformed Abelian integrals
of the q-exact form in lemma 5.2 have unambiguous meaning. Later on we shall deal with
examples of such q-primitives of the form �−1

ζ (ψ(ζ/ξ, α)P (ζ 2)) or �−1
ζ (ψ(ξ/ζ, α)P (ζ 2)).
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6. Properties of Zκ{b∗(ζ)(X)} and Zκ{c∗(ζ)X)}
Our strategy is to compute Zκ{b∗(ζ )(X)} and Zκ{c∗(ζ )X)} inductively, reducing them to
similar quantities involving the annihilation operators b(ζ ), c(ζ ). It has been said in the
Introduction that Zκ{b∗(ζ )(X)} is nontrivial only when X ∈ Wα+1,−1, and Zκ{c∗(ζ )(X)} is
nontrivial only when X ∈ Wα−1,1. We denote these blocks by

b∗(ζ, α) = b∗(ζ )|Wα+1,−1→Wα,0 , c(ζ, α) = c(ζ )|Wα+1,−1→Wα,0 ,

c∗(ζ, α) = c∗(ζ )|Wα−1,1→Wα,0 , b(ζ, α) = b(ζ )|Wα−1,1→Wα,0 .

Hence the nontrivial part of our main equations (1.10) and (1.11) takes the form

Zκ{b∗(ζ, α)(X)} = 1

2π i

∮
�

ω(ζ, ξ)Zκ{c(ξ, α)(X)}dξ 2

ξ 2
, X ∈ Wα+1,−1, (6.1)

Zκ{c∗(ζ, α)(X)} = − 1

2π i

∮
�

ω(ζ, ξ)Zκ{b(ξ, α)(X)}dξ 2

ξ 2
, X ∈ Wα−1,1. (6.2)

Our task is to establish the existence of ω(ζ, ξ) and to determine it explicitly. In view of the
spin reversal symmetry which relates (b∗, c) with (c∗, b), we shall concentrate on the first pair.

Apart from an overall power of ζ, b∗(ζ, α) is defined a priori as a formal power series in
ζ 2 − 1. Nevertheless when acting on each operator it reduces to a rational function, due to the
same mechanism as explained for t∗. Namely,

b∗(ζ, α)(q2(α+1)S(0)X[1,m]) = q2αS(0) lim
l→∞

Trc{Tc,[m+1,l](ζ )gc,[1,m](ζ, α)(X[1,m])}. (6.3)

We recall the definition of the operator gc,[1,m](ζ, α) in appendix A. Formula (6.3) together
with the requirement of translational invariance can be considered as a definition of b∗(ζ, α),
but self-consistency of this definition requires that gc,[1,m](ζ, α) satisfies certain reduction
relations which were proved in [2].

Using (6.3) we find by the same method as in lemma 3.1

T (ζ, κ)Zκ(b∗(ζ, α)(q2(α+1)S(0)X[1,m]))

= Tr[1,m],c(〈κ + α|T[1,m],M(1, κ)Tc,M(ζ, κ)2gc,[1,m](ζ, α)(X[1,m])|κ〉)
T (1, κ)m〈κ + α|κ〉 .

Due to this equation the left-hand side happens to be up to the overall multiplier ζ α a rational
function of ζ 2 with poles only at ζ 2 = q±2. Its singular part is given as follows.

Lemma 6.1. Set

ωsing(ζ, ξ) = −�ζ ψ(ζ/ξ, α) +
4

T (ζ, κ)T (ξ, κ)
(a(ξ)d(q−1ξ)ψ(qζ/ξ, α)

− a(qξ)d(ξ)ψ(q−1ζ/ξ, α)). (6.5)

Then we have

T (ζ, κ)Zκ

{(
b∗(ζ, α) − 1

2π i

∮
�

ωsing(ζ, ξ)c(ξ, α)
dξ 2

ξ 2

)
(X)

}
= ζ αPn(ζ

2), (6.6)

where X ∈ Wα+1,−1, � encircles ξ 2 = 1, and Pn(ζ
2) is a polynomial in ζ 2 of degree at

most n.

Lemma 6.1 is proved in appendix A.
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In order to characterize the quantity on the left-hand side of (6.6), we need to have a
control over the unknown polynomial Pn(ζ

2). This is the point where deformed Abelian
integrals come into play. Introduce the notation

DζF(ζ ) = F(qζ ) + F(q−1ζ ) − 2ρ(ζ )F (ζ ).

Lemma 6.2. For m = 0, . . . , n, the following relations hold:∫
�m

T (ζ, κ)Zκ

{
(b∗(ζ, α) +

1

2π i

∮
�

dξ 2

ξ 2

(
DζDξ�

−1
ζ ψ(ζ/ξ, α)

)
c(ξ, α))(X)

}
×Q−(ζ, κ + α)Q+(ζ, κ)ϕ(ζ )

dζ 2

ζ 2
= 0, (6.7)

for X ∈ Wα+1,−1.

As explained at the end of section 5, one can apply lemma 5.1 to f +(ζ ) = Dξψ(ζ/ξ, α).
Then, the integral over ζ 2 in the second term can be rewritten as∫

�m

T (ζ, κ)DζDξ�
−1
ζ ψ(ζ/ξ, α)Q−(ζ, κ + α)Q+(ζ, κ)ϕ(ζ )

dζ 2

ζ 2

=
∫

�m

Dξψ(ζ/ξ, α)Q−(ζ, κ + α)

× (a(ζ )Q+(q−1ζ, κ) − d(ζ )Q+(qζ, κ))ϕ(ζ )
dζ 2

ζ 2
. (6.8)

Hence it does not actually depend on a particular choice of �−1
ζ ψ(ζ/ξ, α).

Proof of lemma 6.2 is long and technical. We defer it to appendix B.
Comparing (6.1) with (6.6) and (6.7), we infer that the function ω(ζ, ξ) = ω(ζ, ξ |κ, α)

satisfy the conditions:

(1) Singular part

ζ−αT (ζ, κ)(ω(ζ, ξ) − ωsing(ζ, ξ)) is a polynomial in ζ 2 of degree n. (6.9)

(2) Normalization∫
�m

T (ζ, κ)
(
ω(ζ, ξ) + Dζ Dξ�

−1
ζ ψ(ζ/ξ, α)

)
Q−(ζ, κ + α)Q+(ζ, κ)ϕ(ζ )

dζ 2

ζ 2
= 0,

(6.10)

(m = 0, . . . , n). (6.11)

Furthermore, equation (6.2) requires an additional property of ω(ζ, ξ |κ, α) (see
section 7).

(3) Symmetry

ω(ξ, ζ | − κ,−α) = ω(ζ, ξ |κ, α). (6.12)
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7. Definition of ω(ζ, ξ) and its symmetry

We shall first give the definition of the function ω(ζ, ξ), and then prove that it satisfies all the
necessary properties.

In section 5, we defined the matrices A+ and B+. In appendix D we show that the condition

detA+ 	= 0 (7.1)

is equivalent to the non-degeneracy condition (2.3) accepted previously. The classical analogue
of (7.1) states that ‘there are no holomorphic differentials such that all the a-periods vanish’.

Assuming (7.1), consider the function

ω(ζ, ξ |κ, α) = 4

T (ζ, κ)T (ξ, κ)
v+(ζ )t (A+)−1B+v−(ξ) + ωsym(ζ, ξ |κ, α), (7.2)

where v±(ζ ) are vectors with components v±(ζ )j = ζ±α+2j,A,B are given by (5.9) and (5.10),
and

ωsym(ζ, ξ |κ, α) = 1

T (ζ, κ)T (ξ, κ)
{(4a(ξ)d(ζ ) − T (ζ, κ)T (ξ, κ))ψ(qζ/ξ, α)

− (4a(ζ )d(ξ) − T (ζ, κ)T (ξ, κ))ψ(q−1ζ/ξ, α)

− 2ψ(ζ/ξ, α)(T (ζ, κ)T (ξ, κ + α) − T (ξ, κ)T (ζ, κ + α))}.
The function ωsym(ζ, ξ |κ, α) satisfies the relation

ωsym(ζ, ξ |κ, α) = ωsym(ξ, ζ | − κ,−α) (7.3)

due to (4.6) and the equality ψ(ζ−1,−α) = −ψ(ζ, α).
The function ζ−αω(ζ, ξ |κ, α) is a rational function of ζ 2. It is clear by the construction

that property (6.9) is satisfied.
The remaining properties (6.10) and (6.12) of ω(ζ, ξ |κ, α) are more complicated, and we

formulate them as lemmas.

Lemma 7.1. The function ω(ζ, ξ |κ, α) defined by (7.2) satisfies the normalization condition
(6.10).

Proof. By using definitions (5.9) and (5.10) we have∫
�m

v+(ζ )t (A+)−1B+v−(ξ)Q−(ζ, κ + α)Q+(ζ, κ)ϕ(ζ )
dζ 2

ζ 2

= (B+v−(ξ))m

=
∫

�m

r+(ζ, ξ)Q−(ζ, κ + α)Q+(ζ, κ)ϕ(ζ )
dζ 2

ζ 2
,

Definition (5.7) can be rewritten as

r+(ζ, ξ) = E(ψ(ζ/ξ, α)) − 1
4T (ξ, κ)T (ζ, κ)

{
ωsym(ζ, ξ |κ, α) + DζDξ�

−1
ζ ψ(ζ/ξ, α)

}
.

Therefore, the normalization condition (6.10) follows from∫
�m

E(ψ(ζ/ξ, α))Q−(ζ, κ + α)Q+(ζ, κ)ϕ(ζ )
dζ 2

ζ 2
= 0.

�

Lemma 7.2. The function ω(ζ, ξ |κ, α) defined by (7.2) satisfies the symmetry condition (6.12).
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Proof. In section 5, we had relation (5.11)

B+(A−)t = A+(B−)t . (7.4)

In appendix D we show that det(A−) 	= 0 follows from condition (2.3). Hence both A± can
be inverted. So, invert them and multiply the result by v+(ζ )t from the left and v−(ξ) from
the right:

v+(ζ )t (A+)−1B+v−(ξ) = v−(ξ)t (A−)−1B−v+(ζ ).

What remains to do is to add ωsym(ζ, ξ |κ, α) to both sides, to use (7.3) and to recall identities
(4.6) and (4.7). �

8. Main theorem

Now we are able to prove our main theorem.

Theorem 8.1. Under the generality condition (2.3) we have

Zκ{b∗(ζ )(X)} = 1

2π i

∮
�

ω(ζ, ξ)Zκ{c(ξ)(X)}dξ 2

ξ 2
, (8.1)

Zκ{c∗(ζ )(X)} = − 1

2π i

∮
�

ω(ξ, ζ )Zκ{b(ξ)(X)}dξ 2

ξ 2
. (8.2)

Proof. Consider (8.1). It has been said that it is sufficient to consider the blocks
b∗(ζ, α), c(ξ, α). Due to the structure of singularities (6.6) and (6.9) we have

T (ζ, κ)Zκ

{
(b∗(ζ, α) − 1

2π i

∮
�

ω(ζ, ξ)c(ξ, α))(X)

}
dξ 2

ξ 2
= ζ αP̃n(ζ

2), (8.3)

where Pn(ζ
2) is a polynomial of degree n. Due to lemma 6.2 and lemma 7.1 we have∫

�m

ζ αPn(ζ
2)Q−(ζ, κ + α)Q+(ζ, κ)ϕ(ζ )

dζ 2

ζ 2
= 0, m = 0, . . . , n,

which implies Pn(ζ
2) = 0 due to (7.1).

Now consider (8.2). According to [2], the operators c∗, b are related to b∗, c by the
transformation

φα(x(ζ, α)) = q−1N(α − 1) ◦ J ◦ x(ζ,−α) ◦ J,

where N(x) = q−x − qx and J(X) = JXJ−1 is the spin reversal. Namely,

c∗(ζ, α) = −φα(b∗(ζ, α)), b(ζ, α) = φα(c(ζ, α)).

It is also easy to see that

Zκ{X} = Z−κ{J(X)}.
Hence (8.1) implies

Zκ{c∗(ζ, α)(X)} = − 1

2π i

∮
�

ω(ζ, ξ | − κ,−α)Zκ{b(ξ, α)(X)}qξ 2

ξ 2
,

which is equivalent to (8.2) due to (6.12). �
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Appendix A. Proof of lemma 6.1

In this appendix, we prove lemma 6.1. We also prove some additional result used in
appendix B (corollary A.2). First let us comment on equation (6.4). This formula is used in the
proof in order to reduce the action of the operator b∗, when it is considered inside the functional
Zκ , to that of an operator on the interval [1,m]. This is a great simplification, because without
Zκ the support of the coefficients in the expansion of b∗(ζ, α) in ζ 2 − 1 becomes indefinitely
large. In other words, inside Zκ the series expansion of b∗(ζ, α) can be summed up to a
rational function. Therefore, the proof of lemma 6.1 consists of computing the singular part
of the rational function. This task is done indirectly by considering an inhomogeneous space
chain. We introduce inhomogeneity parameters ξ = (ξj ), so that the original multiple poles
ζ 2 = q±2 in the homogeneous chain are split into simple poles ζ 2 = q±2ξ 2

j for 1 � j � m.
Define the functional

Zκ
[1,m]{X[1,m]} = Tr[1,m]〈κ + α|T[1,m],M(ξ, κ)X[1,m]|κ〉∏m

j=1 T (ξj , κ)〈κ + α|κ〉 ,

(A.1)
T[1,m],M(ξ, κ) = T1,M(ξ1, κ) · · · Tm,M(ξm, κ).

Using this functional equation (6.4) takes the form

Zκ{b∗(ζ, α)(q2(α+1)S(0)X[1,m])}
= Zκ

[1,m+1]{2gm+1,[1,m](ξm+1, α)(X[1,m])}|ξ1=···=ξm=1,ξm+1=ζ . (A.2)

First recall from [2] the definition of the operator k[1,m](ζ, α) and its basic relations with
c[1,m](ζ, α), c̄[1,m](ζ, α), f[1,m](ζ, α):

k[1,m](ζ, α)(X[1,m]) = Tra,A

{
σ +

a T{a,A},[1,m](ζ, α)ζ α−S[1,m](q−2S[1,m]X[1,m])
}
, (A.3)

k[1,m](ζ, α)(X[1,m]) − �ζ f[1,m](ζ, α)(X[1,m])

= c[1,m](qζ, α)(X[1,m]) + c[1,m](q
−1ζ, α)(X[1,m]) + c̄[1,m](ζ, α)(X[1,m]). (A.4)

In the complex plane the operators c[1,m](ζ, α), c̄[1,m](ζ, α), f[1,m](ζ, α) have singularities at
ζ 2 = ξ 2

j only. The operator gc,[1,m](ζ, α) is given by

2gc,[1,m](ζ, α)(X[1,m]) = f[1,m](qζ, α)(X[1,m]) + f[1,m](q
−1ζ, α)(X[1,m])

− 2Tc,[1,m](ζ, α)f[1,m](ζ, α)(X[1,m]) + 2uc,[1,m](ζ, α)(X[1,m]), (A.5)

where

uc,[1,m](ζ, α)(X[1,m]) = Tra,A(Ya,c,AT{a,A},[1,m](ζ, α)ζ α−S[1,m](q−2S[1,m]X[1,m])),

Ya,c,A = − 1
2σ 3

c σ +
a + σ +

c σ 3
a − aAσ +

c σ 3
a .
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For the proof of lemma 6.1 we compare the singularities of gc,[1,m](ζ, α)(X[1,m]) inside
the functional Zκ

[1,m+1] with those of c[1,m](ζ, α)(X[1,m]) inside Zκ
[1,m].

It is known that gc,[1,m](ζ, α)(X[1,m]) is regular at ζ 2 = ξ 2
j . Now we compare

resζ 2=q±2ξ 2
m
gc,[1,m](ζ, α)(X[1,m]) with resζ 2=ξ 2

m
c[1,m](ζ, α)(X[1,m]). Set

U[1,m] = resζ 2=ξ 2
m
q[1,m](ζ, α)(X[1,m])

dζ 2

ζ 2
,

q[1,m](ζ, α)(X[1,m]) = TrA
(
TA,[1,m](ζ, α)ζ α−S[1,m](q−2S[1,m]X[1,m])

)
.

Lemma A.1. The operator
[
σ +

m,U[1,m]
]

+ has its support in [1,m − 1]:[
σ +

m,U[1,m]
]

+ = x[1,m−1]Im, x[1,m−1] = Trm
(
σ +

mU[1,m]
)
. (A.6)

We have

resζ 2=ξ 2
m
c[1,m](ζ, α)(X[1,m])

dζ 2

ζ 2
= −1

2

[
σ +

m,U[1,m]
]

+, (A.7)

resζ 2=q2εξ 2
m
(gc,[1,m](ζ, α)(X[1,m]) + Tc,[1,m](ζ, α)f[1,m](ζ, α)(X[1,m]))

dζ 2

ζ 2

=
{− 1

4

[
σ +

m,U[1,m]
]

+ − U[1,m]
(
τ +
mσ +

c − σ +
mτ +

c

)
(ε = +);

1
4

[
σ +

m,U[1,m]
]

+ +
(
τ−
m σ +

c − σ +
mτ−

c

)
U[1,m] (ε = −).

(A.8)

Proof. Property (A.6) appears in [3] as lemma 2.6 (see also [2], appendix D). Formula (A.7)
is proved in [2], lemma 2.2. The calculation for (A.8) is similar, but we omit the details. �

Corollary A.2. We have the relations between c̄[1,m](ζ, α) and c[1,m](ζ, α)

resζ 2=ξ 2
j
(c̄[1,m](ζ, α) + t∗[1,m](ζ, α)c[1,m](ζ, α))(X[1,m])

dζ 2

ζ 2
= 0. (A.9)

Proof. To see (A.9), it suffices to write

resζ 2=ξ 2
m
c̄[1,m](ζ, α)(X[1,m]) = Tra

(
σ +

a Pa,mTa,[1,m−1](ξm, α)U[1,m]
)

= Tra

(
Pa,mTa,[1,m−1](ξm, α)

(
(0, 1)mU[1,m]

(
1
0

)
m

))
,

and use (A.6) and (A.7) and R-matrix symmetry. �

Using lemma A.1, we obtain

resξ 2
m+1=q2ξ 2

m
Zκ

[1,m+1]{2gm+1,[1,m](ξm+1, α)(X[1,m])}dξ 2
m+1

ξ 2
m+1

= resζ 2=ξ 2
m
Zκ

[1,m]{c[1,m](ζ, α)(X[1,m])}dζ 2

ζ 2

− 2 resξ 2
m+1=q2ξ 2

m
Zκ

[1,m+1]

{
U[1,m]

(
τ +
mσ +

m+1 − σ +
mτ +

m+1

)}
. (A.10)

Here the third term of (A.5) does not contribute, because the only singularities of f[1,m](ζ, α)

are the simple poles at ζ 2 = ξ 2
j , and the following inhomogeneous analogue of theorem 3.1

holds

Zκ
[1,m+1]{Tm+1,[1,m](ξm+1, α)X[1,m]} = 2ρ(ξm+1)Z

κ
[1,m]{X[1,m]}. (A.11)

Note that

τ +
mσ +

m+1 − σ +
mτ +

m+1 = (
τ +
mσ +

m+1 − σ +
mτ +

m+1

)
P −

m,m+1,
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where P − is the projector on the singlet,

P −(vε ⊗ vε′) = εδε+ε′,0
1
2 (v+ ⊗ v− − v− ⊗ v+), σ 3vε = εvε.

Using the cyclicity of trace and the quantum determinant relation

P −
m,m+1Tm,M(ξm)Tm+1,M(qξm) = a(qξm)d(ξm)P −

m,m+1,

we find

resξ 2
m+1=q2ξ 2

m
Zκ

[1,m+1]

{
U[1,m]

(
τ +
mσ +

m+1 − σ +
mτ +

m+1

)} = a(qξm)d(ξm)∏m
j=1 T (ξj , κ) · T (qξm, κ)

× Tr[1,m+1]〈κ + α|T[1,m−1],M(ξ, κ)U[1,m]
(
τ +
mσ +

m+1 − σ +
mτ +

m+1

)|κ〉
〈κ + α|κ〉

= − a(qξm)d(ξm)

T (ξm, κ)T (qξm, κ)
Zκ

[1,m−1]

{
Trm

1

2

[
σ +

m,U[1,m]
]

+

}
= 2a(qξm)d(ξm)

T (ξm, κ)T (qξm, κ)
resζ 2=ζ 2

m
Zκ

[1,m]{c[1,m](ζ, α)(X[1,m])}dζ 2

ζ 2
.

In the last line we used (A.6) and (A.7). Computation of the residue at ζ 2 = q−2ξ 2
m is done

similarly, using

τ−
m σ +

m+1 − σ +
mτ−

m+1 = P −
m,m+1

(
τ−
m σ +

m+1 − σ +
mτ−

m+1

)
.

The residues at ξ 2
m+1 = q±2ξ 2

j are readily found from the R-matrix symmetry.

Lemma A.3.

resξ 2
m+1=q±2ξ 2

j
Zκ

[1,m+1]{2gm+1,[1,m](ξm+1, α)(X[1,m])}dξ 2
m+1

ξ 2
m+1

= resζ 2=q±2ξ 2
j
ω(ζ, ξj ) resζ 2=ξ 2

j
Zκ

[1,m]{c[1,m](ζ, α)(X[1,m])}dζ 2

ζ 2
. (A.12)

Proof. This follows from the preceding calculations and

resζ 2=q2ξ 2
j
ω(ζ, ξj ) = 1 − 4a(ξj )d(qξj )

T (ξj , κ)T (ξjq, κ)
,

resζ 2=q−2ξ 2
j
ω(ζ, ξj ) = −

(
1 − 4a(ξjq

−1)d(ξj )

T (ξj , κ)T (ξjq−1, κ)

)
.

�

Let us return to the homogeneous case ξ1 = · · · = ξm = 1. The operators c(ζ, α), c̄(ζ, α)

acting from Wα+1,−1 to Wα,0 are defined by

c(ζ, α)(q2(α+1)S(0)X[1,m]) = q2αS(0)c[1,m](ζ, α)(X[1,m]),
(A.13)

c̄(ζ, α)(q2(α+1)S(0)X[1,m]) = q2αS(0)c̄[1,m](ζ, α)(X[1,m])

and the requirement of translational invariance. This definition is equivalent to that given
in [2]. The reduction relation proven there ensures the self-consistency of the present
definition. Equation (6.6) follows by writing (A.12) as a contour integral and specializing to
ξ1 = · · · = ξm = 1.

It remains to show that the polynomial Pn(ζ
2) in the remainder term of (6.6) has degree

at most n. The only nontrivial case to consider is when the spin of X[1,m] equals −1. Then it
follows from the fact [2] that

gc,[1,m](ζ, α)(X[1,m]) = O(1), ζ 2 → ∞.

This finishes the proof of lemma 6.1.
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Appendix B. Proof of lemma 6.2

The goal of this section is to prove lemma 6.2. The proof is done in several steps.

Step 1. Recall definition (A.3). Fix a solution f0,[1,m](ζ, α) of the equation

�ζ f0,[1,m](ζ, α)(X[1,m]) = k[1,m](ζ, α)(X[1,m]) (B.1)

which has poles only at ζ 2 = q2n(n ∈ Z). Define further

b∗
0(ζ, α)(q2(α+1)S(0)X[1,m]) = lim

l→∞
q2αS(0) Trc{Tc,[m+1,l](ζ )g0,c,[1,m](ζ, α)(X[1,m])}, (B.2)

g0,c,[1,m](ζ, α)(X[1,m]) = 1
2 f0,[1,m](qζ, α)(X[1,m]) + 1

2 f0,[1,m](q
−1ζ, α)(X[1,m])

− Tc,[1,m](ζ, α)f0,[1,m](ζ, α)(X[1,m]) + uc,[1,m](ζ, α)(X[1,m]). (B.3)

Lemma B.1. Define

IM(ζ )(X[1,m]) = Q−
M(ζ, κ + α) Tr[1,m],c(T[1,m],M(1, κ)Tc,M

× (ζ, κ)g0,c,[1,m](ζ, α)(X[1,m]))Q
+
M(ζ, κ).

Identity (6.7) follows from∫
�m

IM(ζ )(X[1,m])ϕ(ζ )
dζ 2

ζ 2
= 0. (B.4)

Proof. Introduce the operator

DζF(ζ ) = F(qζ ) + F(q−1ζ ) − t∗(ζ )F (ζ ),

which can be used to rewrite the definition of b∗(ζ, α):

b∗(ζ, α)(q2(α+1)S(0)X[1,m]) = Dζ (q
2αS(0)f∗

[1,m](ζ, α)(X[1,m]))

+ q2αS(0) lim
l→∞

Trc{Tc,[m+1,l](ζ )uc,[1,m](ζ, α)(X[1,m])}.
In similar formula for b∗

0(ζ, α) the only change is f to f0, u remains the same. Comparing this
with equations (A.4), (B.1) and (A.13) we arrive at

b∗
0(ζ, α) − b∗(ζ, α) = Dζ�

−1
ζ (c(ζq, α) + c(ζq−1, α) + c̄(ζ, α)).

Now consider the term containing c in (6.7). Note that due to lemma 3.1 for any quasi-local
operator X(ζ) depending on ζ

Zκ{Dζ (X(ζ ))} = Zκ{Dζ (X(ζ ))}.
So we replace in (6.7) Dζ ,Dξ by Dζ ,Dξ . On the other hand, from (A.9) it follows that we
have an equality of formal power series in (ζ 2 − 1)−1,

c̄(ζ, α)(q2(α+1)S(0)X[1,m])

= − 1

2π i

∮
�

ψ(ζ/ξ, α)t∗(ξ, α)c(ξ, α)(q2(α+1)S(0)X[1,m])
dξ 2

ξ 2
. (B.5)

Using (B.5) we evaluate

c(ζq, α) + c(ζq−1, α) + c̄(ζ, α) = 1

2π i

∮
�

Dξ (ψ(ζ/ξ, α))c(ξ, α)
dξ 2

ξ 2
.

In other words we obtain an equation similar to (6.4) with b∗ replaced by the expression under
Zκ in (6.7), and g replaced by g0, which is nothing but the matrix element of (B.4). �
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Step 2. The next step is to reduce the identity to a difference equation for g0 on a finite
interval. We will show that, for all m = 1, . . . , n, identity (B.4) reduces to the same equation
for a quantity in the space direction. So, we can forget the Matsubara direction. Introduce an
operator

Ac,[1,m](ζ )(Y[1,m]�c) = Tc,[1,m](ζ )qασ 3
c θc

(
Y[1,m]�cθc(Tc,[1,m](ζ )−1)

)
,

where θ signifies the anti-involution

θ(x) = σ 2xtσ 2 (x ∈ End(V )).

Lemma B.2. Identity (B.4) follows from the equation

g0,c,[1,m](ζ, α)(X[1,m]) = −Ac,[1,m](ζ )(g0,c,[1,m](q
−1ζ, α)(X[1,m])). (B.6)

Proof. By symmetry it suffices to consider the case m = n. We prove the assertion assuming
that sn = 1/2. The general case is reduced to this case by the standard fusion procedure.

From the defining relation (5.1) for ϕ(ζ ), we have

resζ 2=q−2τ 2
n
ϕ(ζ )

dζ 2

ζ 2
= a(τn)

d(q−1τn)
resζ 2=τ 2

n
ϕ(ζ )

dζ 2

ζ 2
.

So, equation (B.4) is equivalent to

d(τnq
−1)IM(τn)(X[1,m]) + a(τn)IM(τnq

−1)(X[1,m]) = 0. (B.7)

Let us compute IM(τn)(X[1,m]). We simplify notations introducing

Y[1,m](ζ, α) = g0,c,[1,m](ζ, α)(X[1,m]).

First, move Tc,M(τn) to the left using the Yang–Baxter equation:

Tr[1,m],c(T[1,m],M(1, κ)Tc,M(τn, κ)Y[1,m](τn, α))

= Tr[1,m],c(Tc,M(τn, κ)T[1,m],M(1, κ)Tc,[1,m](τn)
−1Y[1,m](τn, α)Tc,[1,m](τn)).

Now, for sn = 1/2, the L operator satisfies

Lc,n(1) = ηPc,n,

where we have set η = q1/2(q − q−1). Note that

Tc,M(τn, κ) = ηPc,nTc,M′(τn, κ) = ηTn,M′(τn, κ)Pc,n,

ηTn,M′(τn, κ) = TM(τn, κ + α)q−ασ 3
n ,

where M′ signifies the subinterval [1, n − 1]. Moreover,

TM(τn, κ + α)Q−
M(τn, κ + α) = a(τn)Q

−
M(τnq

−1, κ + α),

because d(τn) = 0. So we can evaluate IM(τn)(X[1,m]) as

IM(τn)(X[1,m]) = a(τn)Q
−
M(τnq

−1, κ + α)Tr[1,m],c(Pc,nT[1,m],M(1, κ)

× q−ασ 3
c Tc,[1,m](τn)

−1Y[1,m](τn, α)Tc,[1,m](τn))Q
+
M(τn, κ).

Now note that

T[1,m],M(1, κ) = T[1,m],n
(
τ−1

n

)
T[1,m],M′(1, κ) = μ(τn)Tn,[1,m](τn)

−1T[1,m],M′(1, κ),

where μ(τ) is a function whose explicit form is irrelevant for our calculation.
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Bring the permutation through T[1,m],M and put T[1,m],c to the right by cyclicity of trace:

IM(τn)(X[1,m]) = μ(τn)a(τn)Q
−
M(τnq

−1, κ + α)

× Tr[1,m],c(T[1,m],M′(1, κ)Pc,nq
−ασ 3

c Tc,[1,m](τn)
−1Y[1,m](τn, α))Q+

M(τn, κ).

We compute IM(τnq
−1)(X[1,m]) similarly, using

Tc,M(τnq
−1, κ) = −2ηq−1P −

c,nTc,M′(τnq
−1, κ) = 2P −

c,nTM(τnq
−1κ),

TM(τnq
−1, κ)Q+

M(τnq
−1, κ) = d(τnq

−1)Q+
M(τn, κ).

The result is

IM(τnq
−1)(X[1,m]) = μ(τn)d(τmq−1)Q−

M(τnq
−1, κ + α)

× Tr[1,m],c(T[1,m],M′(1, κ)Pc,nθc(Y[1,m](τnq
−1, α)θc(Tc,[1,m](τn)

−1)))Q+
M(τn, κ),

where we applied the anti-automorphism θc under Trc using Tr(θ(x)) = Tr(x) and θc(2P −
c,n) =

Pc,n. Thus (B.6) implies (B.7). �

Step 3. The third step is to reduce (B.6) to representation theory.

Lemma B.3. Set

y1 = τ−
c σ +

a − τ−
a σ +

c ,

y2 = σ−
c σ +

a + τ−
c τ +

a − τ +
c τ−

a +
(
τ−
c σ +

a − σ +
c τ +

a

)
aA − σ +

c σ +
a a2

A.

Then equation (B.6) is equivalent to the identities

Trc,a,A(yTc,[1,m](ζ, α)Ta,[1,m](q
−1ζ, α)TA,[1,m](q

−1ζ, α)(X′
[1,m])) = 0

(B.8)
(y = y1, y2),

where we have set X′
[1,m] = (q−1ζ )α−S[1,m]q−2S[1,m]X[1,m].

Proof. Recall definitions (B.1) and (B.3). From the definition of Ac,[1,m] we easily find that

Ac,[1,m](ζ )(xcX[1,m]) = Tc,[1,m](ζ, α)(X[1,m])θc(xc), (B.9)

Ac,[1,m](ζ )Tc,[1,m](q
−1ζ, α)(X[1,m]) = X[1,m]. (B.10)

Write

uc,[1,m](ζ, α)(X[1,m]) = − 1
2σ 3

c k[1,m](ζ, α)(X[1,m]) + σ +
c l[1,m](ζ, α)(X[1,m]).

Applying (B.9) and (B.10) we reduce (B.6) to the form

0 = (k[1,m](ζ, α)(X[1,m]) − Tc,[1,m](ζ, α)(k[1,m](q
−1ζ, α)(X[1,m])))τ

−
c

+ (l[1,m](ζ, α)(X[1,m]) − Tc,[1,m](ζ, α)(l[1,m](q
−1ζ, α)(X[1,m])))σ

+
c .

We rewrite this further, using the fact that yc = 0 if and only if Trc(xcyc) = 0 for any
xc ∈ End(Vc). Nontrivial conditions arise from the choices xc = τ−

c or σ−
c , giving respectively

k[1,m](ζ, α)(X[1,m]) = Trc,a,A

((
σ +

a τ−
c +

(
σ 3

a − aAσ +
a

)
σ +

c

)
× Tc,[1,m](ζ, α)T{a,A},[1,m](q

−1ζ, α)(q−1ζ )α−S[1,m](q−2S[1,m]X[1,m])
)
, (B.11)

l[1,m](ζ, α)(X[1,m]) = Trc,a,A

((
σ +

a σ−
c +

(
σ 3

a − aAσ +
a

)
τ +
c

)
× Tc,[1,m](ζ, α)T{a,A},[1,m](q

−1ζ, α)(q−1ζ )α−S[1,m](q−2S[1,m]X[1,m])
)
. (B.12)

On the other hand, we have an identity (see [2], (2.20))

TA,[1,m](ζ, α)(X[1,m]) = Tra
(
τ +
a T{a,A},[1,m](q

−1ζ, α)(q−1ζ )α−S(X[1,m])
)
,

22



J. Phys. A: Math. Theor. 42 (2009) 304018 M Jimbo et al

which allows us to rewrite the left-hand side of (B.11) as

k[1,m](ζ, α)(X[1,m])

= Trc,a,A

(
σ +

c τ +
a Tc,[1,m](ζ, α)T{a,A},[1,m](q

−1ζ, α)(q−1ζ )α−S[1,m](q−2S[1,m]X[1,m])
)
.

For l[1,m](ζ, α)(X[1,m]), we obtain an analogous expression, replacing σ +
c τ +

a by
(
σ 3

c +aAσ +
c

)
τ +
a .

After this rewriting we take the difference of the left- and the right-hand sides of (B.11)
and (B.12), and do further the gauge transformation

Fa,A · T{a,A},[1,m](ζ, α) · F−1
a,A = Ta,[1,m](ζ, α)TA,[1,m](ζ, α)

(
Fa,A = 1 − aAσ +

a

)
.

The assertion of lemma follows. �

To finish, it remains to prove (B.8). Let R be the universal R matrix of Uq(ŝl2). Denote
by πζ the evaluation module over V = C

2, and by �ζ that of q-oscillator representation W .
For the notation and details, we refer to appendix A of [2]. Let further π[1,m] = π⊗m

1 . The
identities of lemma B.3 can be written as

Trc,a,A(y(πζ ⊗ πq−1ζ ⊗ �q−1ζ ⊗ π[1,m])R) = 0 (y = y1, y2). (B.13)

In the tensor product

Z = Vζ ⊗ Vq−1ζ ⊗ Wq−1ζ ,

there are two pairs which allow for nontrivial Uqb-submodules:

V0 ⊂ Vζ ⊗ Vq−1ζ , W0 ⊂ Vq−1ζ ⊗ Wq−1ζ .

The submodule V0 � C (resp. W0 � Wq−2ζ ) is spanned by v+ ⊗ v− − v− ⊗ v+ (resp.
{v− ⊗ |n〉 + (q2n − 1)v+ ⊗ |n − 1〉}n�0). Set

Z1 = V0 ⊗ Wq−1ζ , Z2 = Vζ ⊗ W0.

Then a direct calculation shows that

y1Z ⊂ Z1, y1Z1 = 0,

y2Z ⊂ Z1 ⊕ Z2, y2Z1 ⊂ Z2, y2Z2 ⊂ Z1.

Since xZi ⊂ Zi (i = 1, 2) holds for x ∈ Uqb, we have

Trc,a,A(yi(πζ ⊗ πq−1ζ ⊗ �q−1ζ )(x)) = 0 (x ∈ Uqb).

The proof is now complete.

Step 4. To complete the proof of lemma 6.2, we show the matrix element of (B.4) between
〈κ + α|, |κ〉 for m = 0. The integral consists of two parts, say J1 and J2, coming from the first
three terms in (B.3), or from uc,[1,m](ζ, α), respectively. We note that in view of (B.1) and
lemma 5.1 the proper meaning of J1 is

J1 = 1

2

∫
�0

〈κ + α|Tr[1,m],c(T[1,m],M(1, κ)Tc,M(ζ, κ)kc,[1,m](ζ, α)(X[1,m]))|κ〉

×Q−(ζ, κ + α)(a(ζ )Q+(q−1ζ, κ) − d(ζ )Q+(qζ, κ))ϕ(ζ )
dζ 2

ζ 2
.

The functions

Tc,M(ζ, κ), ϕ(ζ ), ζ κ+αQ−(ζ, κ + α), ζ−κQ+(ζ, κ), a(ζ ), d(ζ )

are all regular at ζ 2 = 0. On the other hand, for X[1,m] of spin −1, we have the estimate

ζ−αk[1,m](ζ, α)(X[1,m]) = O(ζ 2) (ζ 2 → 0),

as explained in [2], section 2.5. The same argument there shows also

ζ−αl[1,m](ζ, α)(X[1,m]) = O(ζ 2) (ζ 2 → 0).

It follows that in both J1 and J2 the integrand is regular and the residue at ζ 2 = 0 vanishes.
This completes the proof of lemma 6.2.
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Appendix C. Classical limit

In this appendix, we explain the classical limit of our construction and its relation to
hyperelliptic Riemann surfaces. We shall not go into much detail since similar considerations
were discussed in [10, 12]. We assume α = 0. At the moment we are not ready to discuss the
classical limit in the case α 	= 0. We consider Bethe vectors of spin 0, so that ζ∓κQ±(ζ, κ)

are polynomials in ζ 2 of the same degree

s =
n∑

m=1

sm.

In the parametrization q = eπ iν , the classical limit amounts to ν → 0. So ν plays the
role of Planck’s constant. Let us see what happens to the solutions to the Baxter equation
in this limit. First of all, in order to obtain a Riemann surface of a finite genus, we keep n
finite. But for the classical limit we need to have large quantum numbers. This is achieved
by considering large spins sm. Actually, this was the main reason for us to consider arbitrary
spins in the Matsubara direction. So, we require that νsm, or equivalently qsm , tend to fixed
non-zero values when ν → 0. Similarly, we demand that νκ , or qκ , stays finite in the limit.
In this situation, a(ζ ), d(ζ ) and T (ζ ) = T (ζ, κ) tend to polynomials in ζ 2 of degree n, which
we denote by the same letters as in the quantum case.

In the classical limit, the poles of ϕ(ζ ) concentrate on the portion of circles between the
end points τ 2

mq−2sm and τ 2
mq2sm . The s zeros of the polynomials ζ∓κQ±(ζ, κ) concentrate to

n open curved segments Cm close to the above circular segments. This claim is difficult to
prove, but we can justify them by analysing the Baxter equation in the classical limit.

Consider the Baxter equation

d(ζ )Q(ζq) + a(ζ )Q(ζq−1) = T (ζ )Q(ζ ). (C.1)

We look for its quasi-classical solution in the form

Q(ζ) = F(ζ, ν) exp

{
1

2π iν

∫ ζ 2

1
log η(ξ)

dξ 2

ξ 2

}
, (C.2)

where η(ζ ) is a function independent of ν and F(ζ, ν) is a power series in ν. First, dividing the
Baxter equation by Q(ζ) and considering the leading order in Planck’s constant we conclude
that η(ζ ) must solve the equation

d(ζ )η(ζ ) + a(ζ )η−1(ζ ) = T (ζ ). (C.3)

This is the equation of the spectral curve of the corresponding classical model.
The function η(ζ ) has two branches,

η±(ζ ) = T (ζ ) ±
√

T (ζ )2 − 4a(ζ )d(ζ )

2d(ζ )
,

for future convenience we choose the branch of the square root such that
√

(qκ − q−κ)2 =
qκ − q−κ .

Consider the behaviour ζ 2 → ∞. The polynomial T (ζ ) is not arbitrary, it comes from
the quasi-classical limit of a solution to the Baxter equation (C.1). Recall that for large ζ the
function Q±(ζ ) is O(ζ±κ+2s) as discussed in section 4. Also we have for ζ 2 → ∞ and to the
main order in Planck’s constant

a(ζ ) = τ−2q2sζ 2n + · · · , d(ζ ) = τ−2q−2sζ 2n + · · · ,
where τ = ∏

τm. So, the Baxter equation implies that

T (ζ ) = τ−2(qκ + q−κ)ζ 2n + · · · .
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Hence when ζ 2 → ∞ we have η± → q±κ+2s , which means that η+ (resp. η−) corresponds to
quasi-classical limit of Q+ (resp. Q−).

Throughout this paper we use as parameter ζ while all the important quantities are
actually functions of ζ 2. This notational problem is due to historical reasons, and we are
forced to tolerate it in the quantum case. However, in the classical case this notation becomes
very unnatural making incomprehensible simple formulae for differentials on hyperelliptic
Riemann surface. That is why in what follows we shall often use the parameter z = ζ 2. For
the same reason we denote the discriminant T (ζ )2 − 4a(ζ )d(ζ ), which actually depends on
ζ 2, by P(ζ 2). Recalling that a(ζ ), d(ζ ), T (ζ ) are polynomials of ζ 2 and making the change of
variables, z = ζ 2, w = 2d(ζ )η(ζ ) − T (ζ ), we bring the spectral curve (C.3) to the canonical
form:

w2 = P(z). (C.4)

In the q-deformed Abelian integrals the integration measure contains Q−(ζ, κ)Q+(ζ, κ).
The most direct way to compute this quantity uses the quantum Wronskian (4.4)

1

qκ − q−κ
W(ζ ) = Q+(ζ, κ)Q−(ζq, κ) − Q−(ζ, κ)Q+(ζq, κ)

→
ν→0

(η− − η+)Q+(ζ, κ)Q−(ζ, κ).

This implies

Q+(ζ, κ)Q−(ζ, κ)ϕ(ζ ) →
ν→0

1

q−κ − qκ

1√
P(ζ 2)

, (C.5)

where we used the identity W(ζ)d(ζ )ϕ(ζ ) = 1.
The discriminant P(z) is a polynomial of degree 2n. Let us call its zeros x1, . . . , x2n.

The Riemann surface (C.4) is presented as two copies of the z-plane glued together along the
cuts [x2m−1, x2m]. According to the conjecture accepted previously, the branch points can be
ordered in such a way that the cut [x2m−1, x2m] is not far from the location of poles of ϕ(ζ )

which are contained in the contour �m. According to (C.5), for any polynomial L(ζ 2) we
have in the classical limit∫

�m

L(ζ 2)Q+(ζ, κ)Q−(ζ, κ)ϕ(ζ )
dζ 2

ζ 2
→
ν→0

2

q−κ − qκ

∫
cm

L(z)√
P(z)

dz

z
, (C.6)

where cm is a contour going in the z-plane around [x2m−1, x2m] for 1 � j � n, or around
0 for m = 0. The limit (C.6) requires some remarks. The integral on the left-hand side is
taken over the contour �m. In the limit the integrand develops cuts which appear as a result of
concentration of zeros of Q+(ζ, κ)Q−(ζ, κ) and poles of ϕ(ζ ). So, obviously, in the limiting
process we have to deform the contour in order that it does not cross the cut. This is how the
integral around cm appears.

The Riemann surface (C.4) has genus n − 1. The contours cm, with m = 1, . . . , n − 1
can be taken as a-cycles. Our Riemann surface has two points 0± which lie on different sheets
and project to z = 0. The contour c0 goes around 0+. Similarly we have two points ∞± which
project to z = ∞.

Define the differentials on the Riemann surface

σj(z) = zj−1

√
P(z)

dz, j = 0, . . . , n.

The differentials σj(z) where j = 1, . . . , n − 1, are holomorphic (the first kind) differentials,
while the differentials σ0 and σn are the third kind differentials. The differential σ0 has simple
poles at z = 0±, it is dual to the contour c0. The differential σn has simple poles at z = ∞±.
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The holomorphic differentials can be normalized with respect to ci, i = 1, . . . , n − 1
because

det

(∫
ci

σj

)
i,j=1,...,n−1

	= 0.

This is the classical version of (7.1).
Consider the differentials whose only singularities are at ∞±. Among those are exact

forms
d

dz
(zk

√
P(z)) dz, zk dz, k � 0. (C.7)

Up to exact forms, holomorphic forms and the third kind differential σn(z) there are n − 1
linearly independent second kind differentials with singularities at ∞±:

σ̃j(z) = zj
[

d

dz
(z−2jP(z))

]
+

dz

2
√

P(z)
, j = 1, . . . , n − 1,

where [f (z)]+ means the polynomial part of f (z), which is a Laurent polynomial at z = ∞.
We shall use at some point the differential σ̃0 which is an exact form.

The most important identity in the theory of Riemann surfaces is the Riemann bilinear
relations. Usually this identity is written in the form

g∑
m=1

(∫
am

ω1

∫
bm

ω2 −
∫

bm

ω1

∫
am

ω2

)
= 2π iω1 ◦ ω2,

where ω1,2 are the first or the second kind differentials, and

ω1 ◦ ω2 = −
∑

res(ω1d
−1ω2).

In our case the a-cycles coincide with c1, . . . , cn−1. The b-cycle bm (m = 1, . . . , n − 1)
crosses the cycle am once on the first sheet of the surface, goes to the second sheet through the
mth cut, arrives to nth cut by the second sheet, crosses this cut and returns by the first sheet to
its beginning.

An alternative way of writing the Riemann bilinear relations is the following. It is easy
to see that σ and σ̃ constitute a canonical basis

σi ◦ σ̃j = δi,j, σi ◦ σj = 0, σ̃i ◦ σ̃j = 0. (C.8)

Now construct the antisymmetric form

σ(x, y) =
n−1∑
j=1

(σj(x)σ̃j(y) − σj(y)σ̃j(x)). (C.9)

Then ∫
g1

∫
g2

σ(x, y) = 2π ig1 ◦ g2, (C.10)

where on the right-hand side we put the intersection number of cycles. From the explicit
formulae for σi and σ̃j, one easily finds the 2-form σ(x, y),

σ(x, y) =
(

∂

∂y

(
1

y − x

√
P(y)√
P(x)

)
− ∂

∂x

(
1

x − y

√
P(x)√
P(y)

))
dx dy. (C.11)

This form is exact, so, apparently the integrals over all 2-cycles must vanish. However, there
is a singularity at x = y which produces the intersection number on the right-hand side of
(C.10). All this is quite standard, so we do not go into much detail.
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Consider a particular case of (C.10),∫
ci

∫
cj

σ(x, y) = 0, i, j = 1, . . . , n − 1. (C.12)

This is true because the a-cycles do not intersect.
On the product of two copies of Riemann surface we have the canonical second kind

differential ρ(x, y) with the following properties.

• The differential ρ(x, y) is holomorphic everywhere except the diagonal, where it has a
double pole with no residue

ρ(x, y) =
(

1

(x − y)2
+ O(1)

)
dx dy. (C.13)

• The differential ρ(x, y) is normalized with respect to x,∫
cm

ρ(x, y) = 0, m = 1, . . . , n − 1. (C.14)

An important consequence of the Riemann bilinear relations is that this differential is
automatically symmetric:

ρ(x, y) = ρ(y, x). (C.15)

Let us explain this by giving an explicit construction of ρ(x, y). We start with an exact form
in x,

− ∂

∂x

( √
P(x)√

P(y)(x − y)

)
dx dy.

which obviously has the required singularity at x = y, but has also additional singularities
at infinity. Because of (C.9) and (C.11), these singularities are cancelled in the following
expression:

ρ(x, y) = − ∂

∂x

( √
P(x)√

P(y)(x − y)

)
dx dy +

n−1∑
i=1

σ̃i(x)σi(y) +
n−1∑
i,j=1

Xi,jσj(x)σi(y),

where the matrix Xi,j must be defined from the normalization condition

n−1∑
j=1

Xi,j

∫
ck

σj +
∫

ck

σ̃i = 0.

Now writing a similar formula for ρ(y, x), it becomes apparent that symmetry (C.15) is
equivalent to the fact that X is a symmetric matrix. This fact follows from (C.12). There is an
obvious similarity between this argument and the proof of lemma 7.2.

Suppose that we want to construct a normalized second kind differential with given
singular part. To be more precise, we allow a singularity only at x = 1 with a given singular
part

τsing(x) =
N∑

k=2

γk(x − 1)−k dx.

So, we look for a differential which has the singular part τsing(x) at x = 1 and is holomorphic
elsewhere. We require that τ(x) is normalized∫

cm

τ(x) = 0.
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It is rather obvious that τ(x) is given by

τ(x) =
∮

�

σ (x, y) d−1τsing(y), (C.16)

where the contour � is as usual: 1 is inside it and x outside.
Let us return to the quasi-classical limit of the quantum formulae. First, note that for

α = 0 the operator D becomes the second difference derivative because ρ(ζ ) = 1:

1

(π iν)2
Dζ (f (ζ )) = 1

(π iν)2
(f (ζq) + f (ζq−1) − 2f (ζ )) →

ν→0

(
ζ

d

dζ

)2

f (ζ ).

Also �−1
ζ goes to the primitive function

2π iν�−1
ζ (f (ζ )) →

ν→0

(
ζ

d

dζ

)−1

f (ζ ).

Consider the f (ζ ) = L(ζ 2) and the corresponding q-deformed exact form (for α = 0 there is
no difference between f ±(ζ )):

�ν(ζ
2) = 1

π iν
E(f (ζ ))Q−(ζ )Q+(ζ )ϕ(ζ )

dζ 2

ζ 2

then

�ν(z) →
ν→0

− d

dz
(L(z)

√
P(z)) dz.

Denote

σν(ζ
2, ξ 2) = 1

π iν
r(ζ, ξ)Q−(ζ )Q+(ζ )ϕ(ζ )Q−(ξ)Q+(ξ)ϕ(ξ)

dζ 2

ζ 2

dξ 2

ξ 2
,

Then we have

σν(x, y) →
ν→0

σ(x, y) + 1
2 (σ0(x)σ̃0(y) − σ0(y)σ̃0(x)), (C.17)

the additional term is not important in (C.10) because σ̃0 is an exact form. The limit (C.17)
explains the name q-deformed Riemann bilinear relations for (5.8).

Consider now

ρν(ζ
2, ξ 2) = 1

π iν
T (ζ )T (ξ)ω(ζ, ξ)Q−(ζ )Q+(ζ )ϕ(ζ )Q−(ξ)Q+(ξ)ϕ(ξ)

dζ 2

ζ 2

dξ 2

ξ 2
.

We want to show that

ρν(x, y) →
ν→0

ρ(x, y).

First, it is rather easy to find that in singularity (6.5) two simple poles produce in the classical
limit the double pole in (C.13). Second, we have the normalization conditions (6.10). They
look different from the normalization conditions (C.14) because of the presence of the term

1

π iν

∫
�m

T (ζ, κ)DζDξ�
−1
ζ ψ(ζ/ξ)Q−(ζ )Q+(ζ )ϕ(ζ )

dζ 2

ζ 2
. (C.18)

However, this term for α = 0, ν → 0 is of order ν2, while ρν(ζ
2, ξ 2) is of order 1. So

term (C.18) does not count and from (6.10) with m = 1, . . . , n − 1 we get the normalization
conditions (C.14). Conditions (6.10) with m = 0, n show that the differential ρν(ζ

2, ξ 2) in
the limit ν → 0 does not have simple poles at ζ 2 = 0,∞ which were originally present.

Thus we conclude that the function ω(ζ, ξ) is related in the classical limit to the canonical
normalized second kind differential.

Note a clear similarity between formula (C.16) and our main formula (6.1).
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Appendix D. Equivalence of different non-degeneracy conditions

In this appendix, we show that the conditions det(A±) 	= 0 are equivalent to the fact that the
scalar product (2.3) does not vanish. We use usual notations of the quantum inverse scattering
method (QISM) [15]:

Ta,M(ζ ) =
(

A(ζ ) B(ζ )

C(ζ ) D(ζ )

)
a

.

Consider the case when all the spaces in the Matsubara direction are two-dimensional (spin
1/2). The basis of the two-dimensional space will be denoted by e±. Introduce two vectors in
Matsubara space

|+〉 = e+ ⊗ · · · ⊗ e+, , |−〉 = e− ⊗ · · · ⊗ e−. (D.1)

The eigenvector |κ〉 is written in QISM framework as

|κ〉 =
∏

C
(
λ−

j

)|−〉, (D.2)

where
(
λ−

j

)2
are zeros of ζ κQ−

M(ζ, κ) which is a polynomial of ζ 2. It is well known that this
eigenvector does not vanish identically unless τi = τjq for some j > i. The latter situation has
to be forbidden from the very beginning because the tensor product on ith and jth spaces is
reducible and contains one-dimensional sub-module. On the other hand, there is no problem
with the case τi = τjq

−1 which allows the fusion procedure, and show that our considering
only spin 1/2 representations is not a real restriction.

Consider now the vector
∏

B
(
λ+

j

)|+〉, where
(
λ+

j

)2
are zeros of ζ−κQ+

M(ζ, κ). This vector
also does not vanish identically, it is an eigenvector of TM(ζ, κ) with the same eigenvalue as
(D.2). Hence, the assumed uniqueness of the eigenvector with the eigenvalue of maximal
absolute value implies that this vector is proportional to |κ〉 with some coefficient which
depends on τj and κ , the exact form of this coefficient is irrelevant here.

Now consider the scalar product (2.3). We do not care about the normalization of the
eigenvectors, so, in traditional QISM way it is written as

〈κ + α|κ〉 = 〈−|
∏

B
(
μ−

j

) ∏
C

(
λ+

j

)|−〉,
where

(
μ±

j

)2
are zeros of ζ∓κQ±

M(ζ, κ). Due to the previous remark we rewrite

〈κ + α|κ〉 = const〈−|
∏

B
(
μ−

j

) ∏
B

(
λ+

j

)|+〉, (D.3)

where const is a non-vanishing constant which was discussed above. So, we conclude that
the scalar product in question is given essentially by the partition function with domain wall
boundary conditions

Mn(ξ1, . . . , ξn|τ1, . . . , τn) =
∏

ξ−1
j 〈−|

n∏
j=1

B(ξj)|+〉

with specification {ξj} = {μ−
j } ∪ {

λ+
j

}
, note that independently of spin of our eigenvectors the

number of elements in the latter set is n.
Being a polynomial of degree n − 1 in ξ 2

n the function Mn is completely characterized by
the recurrence relation:

Mn(ξ1, . . . , ξn−1, τn|τ1, . . . τn−1, τn) = (q2 − 1)τ−1
n

∏
τ−2

j

×
∏
j	=n

(
q2ξ 2

j − τ 2
n

)(
q2τ 2

n − τ 2
j

)
Mn−1(ξ1, . . . , ξn−1|τ1, . . . , τn−1). (D.4)

This recurrence was solved by Izergin who found a determinant formula for Mn−1 [16].
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On the other hand, we have the determinant det(A+) of (n + 1) × (n + 1) matrix. This
determinant depends on the Bethe roots only through the product Q−(ζ, κ +α)Q+(ζ, κ). Once
again we consider the union {ξj} = {

μ−
j

} ∪ {
λ+

j

}
and normalize this product as follows:

Q−(ζ, κ + α)Q+(ζ, κ) =
n∏

j=1

(
ζ 2 − ξ 2

j

)
.

The determinant can be reduced in two steps:

det
(
A+

i,j

)
i,j=0,...,n = −2π i

∏
ξ 2

j det
(
A+

i,j

)
i,j=1,...,n,

(D.5)
det

(
A+

i,j

)
i,j=1,...,n = −2π i det

(
A+

i,j

)
i,j=1,...,n−1,

where we used the obvious identities:∫
�0

ζ α+2jQ−(ζ, κ + α)Q+(ζ, κ)ϕ(ζ )
dζ 2

ζ 2
= (−1)n−12π iδj,0

∏
ξ 2

j ,∫
�∞

ζ α+2jQ−(ζ, κ + α)Q+(ζ, κ)ϕ(ζ )
dζ 2

ζ 2
= −2π iδj,n,

Making the dependence on n and other parameters explicit we introduce

Dn(ξ1, . . . , ξn|τ1, . . . , τn)

= (−1)n(n−1)/2
∏

τ−2
j

∏
i,j

(
qτ 2

i − q−1τ 2
j

)∏
i<j

(
τ 2

i − τ 2
j

)
det

(
A+

i,j

)
i,j=1,...,n.

where we preferred the intermediate reduction from (D.5) for its antisymmetry with respect to
permutation of τ s. In the case of two-dimensional representations in the Matsubara direction
the integrals in A+

i,j are easy: they are given by the sum of two residues. Obviously, Dn is a
polynomial in ξ 2

n of degree n. However the second relation from (D.5) shows that the actual
degree is n − 1.

Set ξn = τn and multiply the matrix A+ from the right by the matrix I − τ 2
n E with

Ei,j = δi,j−1. Then it is easy to see that in the last row only nth matrix element does not
vanish. Using this, after some simple algebra one sees that Dn satisfies relation (D.4). Hence
we conclude that

Dn(ξ1, . . . , ξn|τ1, . . . , τn) = Mn(ξ1, . . . , ξn|τ1, . . . , τn).

Due to the above reasoning it shows that 〈κ + α|κ〉 is proportional to det(A+) with a non-
vanishing coefficient. Similarly, rewriting 〈κ + α|κ〉 as

〈κ + α|κ〉 = const〈+|
∏

C
(
μ+

j

) ∏
C

(
λ+

j

)|−〉,
one proves that it is proportional to det(A−) with a non-vanishing coefficient.
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